было уже как три месяца, но думаю, будет интересно.
Группа российских и американских физиков открыла новое физическое явление, полную противоположность сверхпроводимости. В нарушение закона Ома тонкие плёнки нитрида титана совсем не проводят ток, обеспечивая идеальную изоляцию.
// www.gazeta.ru
Группа российских и американских физиков открыла новое физическое явление, полную противоположность сверхпроводимости. В нарушение закона Ома тонкие плёнки нитрида титана совсем не проводят ток, обеспечивая идеальную изоляцию.
В последнем выпуске Nature появилась статья, описывающая проявление упорядочения, приводящее к возникновению явления, которое авторы назвали сверхсопротивлением.
Это означает, что материал, проявляющий сверхпроводящие свойства, в определенных условиях попросту перестает проводить электричество, становясь идеальным изолятором.
Авторы работы подчеркивают большую корректность слова «антисверхпроводимость» в случае их эффекта, а не «сверхсопротивление»: явление нулевой проводимости может быть обнаружено в определенных условиях только на сверхпроводящих материалах. Впрочем, оба термина допустимы.
Новое физическое явление ученые из Института физики пулупроводников в Новосибирске и американской Национальной лаборатории в Аргонне во главе с Татьяной Батуриной и Валерием Винокуром наблюдали на тонких пленках нитрида титана (TiN). Эксперимент провели в Университете Регенсбурга Татьяна Батурина и Алексей Миронов, а теоретическое объяснение антисверхпроводимости нашёл Валерий Винокур.
В данном случае речь идет о двумерной системе сверхпроводящих участков, разделенных изолирующей матрицей. Как пояснил «Газете.Ru» сам Винокур, электропроводность подобного рода материалов сильно зависит от толщины пленки. При этом существует определённок критическое значение этого параметра. При толщине меньше критической подобные материалы ни при каких температурах не могут быть сверхпроводниками и являются изоляторами. При переходе через эту граничную толщину они претерпевают так называемый квантовый фазовый переход и способны стать сверхпроводниками при понижении температуры.
Интересы ученых и были сосредоточены как раз на этой тонкой границе перехода. Они изучали пленки, по толщине лишь чуть-чуть «не дотягивающие» до границы сверхпроводимости. В этом случае нитрид титана является обычным изолятором с высоким сопротивлением. Но как только его температура понижается до, примерно, 0,04 градусов выше абсолютного нуля, сопротивление материала резко увеличивается. Насколько - точно сказать нельзя, так как измерить его не удалось. Речь идёт по меньшей мере о сотнях тысяч раз.
Такой переход материала с конечным сопротивлением к материалу с сопротивлением, не поддающимся измерению, и был назван переходом в сверхизолирующее или антисверхпроводящее состояние.
Включение магнитного поля ещё более понижает температуру такого «сверхизоляторного» перехода. Более того, слишком сильное магнитное поле вообще разрушает сверхизолятор - в замечательном соответствии со сверхпроводимостью, где магнитные поля, превышающие так называемое критическое значение уничтожают сверхпроводящее состояние!
«Механизм перехода материала в сверхизолирующее состояние можно назвать зеркальным по отношению к механизму перехода в сверхпроводящее состояние», - сказал Винокур.
Согласно модели авторов статьи в Nature, виновата в таком поведении гибридная структура материала. Сверхпроводящие «лужицы» в нём разделены между собой непроводящими участками - барьерами, называемыми мостиками, или переходами Джозефсона. Эти островки настолько малы, что появление на нём даже одной «лишней» пары электронов (в сверхпроводящем состоянии электроны объединяются в так называемые куперовские пары) создает электрические силы, ставящие огромный барьер для последующих частиц. Это явление называется «кулоновской блокадой» и именно оно является ответственным за изоляторные свойства исследуемых плёнок нитрида титана.
Чтобы понять, что приводит к дальнейшему росту сопротивления в сотни тысяч раз при переходе в сверхизолятор, нам придется взглянуть на систему с позиций квантовой механики, так как здесь, как и в случае сверхпроводимости, речь идет об упорядочении квантовых величин на макроскопическом уровне.