[image]

Моделирование соматических вычислений в не-нейронных биоэлектрических сетях

Об исследованиях базального интеллекта
 

Tico

модератор
★★☆

Modeling somatic computation with non-neural bioelectric networks

The field of basal cognition seeks to understand how adaptive, context-specific behavior occurs in non-neural biological systems. Embryogenesis and regeneration require plasticity in many tissue types to achieve structural and functional goals in diverse circumstances. Thus, advances in both evolutionary cell biology and regenerative medicine require an understanding of how non-neural tissues could process information. Neurons evolved from ancient cell types that used bioelectric signaling to perform computation. However, it has not been shown whether or how non-neural bioelectric cell networks can support computation. We generalize connectionist methods to non-neural tissue architectures, showing that a minimal non-neural Bio-Electric Network (BEN) model that utilizes the general principles of bioelectricity (electrodiffusion and gating) can compute. We characterize BEN behaviors ranging from elementary logic gates to pattern detectors, using both fixed and transient inputs to recapitulate various biological scenarios. We characterize the mechanisms of such networks using dynamical-systems and information-theory tools, demonstrating that logic can manifest in bidirectional, continuous, and relatively slow bioelectrical systems, complementing conventional neural-centric architectures. Our results reveal a variety of non-neural decision-making processes as manifestations of general cellular biophysical mechanisms and suggest novel bioengineering approaches to construct functional tissues for regenerative medicine and synthetic biology as well as new machine learning architectures. //  www.nature.com
 

Комментарий:



Кардинальный прорыв к вычислительным искусственным живым машинам.
Это стало возможно, т.к. тело может мыслить и без мозга.
Революционность этого открытия в том, что:
- до сих пор мы стремились сделать неживые машины с неким аналогом мозга (от компов и смартфонов до роботов);
- теперь же стало ясно, что если сделать живую машину, то она сможет обходиться и без мозга.
Суть открытия в том, что найден революционный способ реализации вычислений (память, логика, прогнозирование и решение проблем) у живых организмов БЕЗ нейронных сетей.
Из чего следует.
✔️ У живого организма 2 вычислительные системы: нейронная и не-нейронная (на основе обычных клеток).
✔️ И, соответственно, 2 механизма познания: нейронное и базальное (Basal Cognition).

Базальное познание есть у всех неневральных животных, растений, грибов и одноклеточных организмов. А у многоклеточных, включая нас, оно выполняет сложнейшие функции:
• неподъемные для нейронного познания: типа, конструирования и сборки органов – от глаза до сердца;
• и, что еще более важно, - не допускающие ошибок (коих в нейронных сетях избежать трудно).

То, что базальное познание (универсальный вычислитель на НЕнейронной основе) существует, биологи подозревали давно. Одноклеточные формы жизни и соматические клетки многоклеточных организмов принимают гибкие решения на основе входов в их микросреду. Например, биоэлектрические сигналы опосредуют важные аспекты долгосрочной координации, которые удерживают клетки для поддержания плана тела и не допуская развития онкогенеза. Нейроны же произошли от этих древних типов клеток, которые использовали биоэлектрическую сигнализацию для выполнения вычислений.

В то же время, даже у самых эволюционно развитых многоклеточных (типа людей) многие биопроцессы в организме (вплоть до сложнейшего регулирования морфогенезом и регенерацией), можно рассматривать как процессы, включающие обработку информации и принятие решений без участия мозга.

Память, прогнозирование и решение проблем прекрасно демонстрируются у абсолютно безмозглых сперматозоидов, амеб, дрожжей и растений. А у многоклеточных, например, при регенерации, сложность вычислительных задач, решаемых без участия нейронных систем, просто зашкаливает.

Например, хвосты, привитые по бокам саламандры, медленно переделываются в конечности, демонстрируя способность ткани определять свое положение в теле, сравнивать анатомию на уровне органов с целевой анатомией, и переделывая алгоритм регенерации тканей с учетом правильной анатомической корректировки.

Задача - понять, как ткани вычисляют с помощью биоэлектрических процессов, крайне важна для эволюционной биологи, регенеративной медицины и синтетической биоинженерии (разработка синтетических «живых машин»).

Новое исследование построило модель биоэлектрической сети BEN, способной решать когнитивные задачи в контексте биологических процессов (например, морфогенеза и ремоделирования), где сети НЕнейронных клеток совместно вычисляют и принимают решения.

Сети BEN позволяют реализовывать весь необходимый для вычислений HW: логические вентили, составные логические элементы, детекторы паттернов и память.
Это первое научное доказательство существования класса биологических систем, где вычислительный подход реализован на соматических биоэлектрических сетях.

Кроме того, авторы продемонстрировали, что логика может быть реализована в схемах с двунаправленными соединениями, которые типичны для НЕнейронных тканей, в отличие от традиционных однонаправленных схем, таких как нейронные сети и цифровые электронные схемы.

Мало того, что сети BEN могут вычислять, но они также могут быть устойчивыми к повреждениям, сохраняя вычислительные функцию даже после удаления части клеток.

Авторы считают, что это исследование обеспечивает концептуальные и моделирующие основы для понимания и управления развитием и регенерацией, а также для создания вычислительных искусственных живых машин.
 
   68.0.3440.10668.0.3440.106

в начало страницы | новое
 
Поиск
Настройки
Твиттер сайта
Статистика
Рейтинг@Mail.ru